തമോദ്വാരങ്ങളുടെ ഉള്ളില്‍ സംഭവിക്കുന്നത്‌

സാബുജോസ് 

“Sometimes truth is stranger than fiction, and nowhere is that more true than in the case of blackholes” -Stephen W. Hawking

സയന്‍സ്‌ ഫിക്ഷന്‍ സിനിമകളിലെ അദ്‌ഭുതം ജനിപ്പിക്കുന്ന കഥയും കഥാപാത്രങ്ങളും ആസ്വദിക്കാത്തവരായി ആരുമുണ്ടാകില്ല. നിത്യജീവിതത്തില്‍ ഒരിക്കലും സംഭവിക്കാനിടയില്ലെങ്കിലും അത്തരം ഫിക്ഷനുകളിലെ കഥാപാത്രങ്ങളും സംവിധായകന്‍ സൃഷ്‌ടിക്കുന്ന സമാന്തരലോകങ്ങളും ലോകമെമ്പാടുമുള്ള പ്രേക്ഷകരെ എന്നും ആകര്‍ഷിക്കാറുണ്ട്‌. എന്നാല്‍ ലോകത്തിന്നുവരെ പ്രേക്ഷകര്‍ക്ക്‌ മുന്നിലെത്തിയ ഏതൊരു സയന്‍സ്‌ ഫിക്ഷന്‍ സിനിമയിലും നോവലിലും ഉള്ളതിനേക്കാള്‍ വിചിത്രവും സങ്കല്‍പിക്കാന്‍ കഴിയുന്ന പരിധിക്കപ്പുറത്തുള്ളതുമായ ഒരു പ്രതിഭാസം പ്രപഞ്ചത്തിലുണ്ട്‌. അത്‌ യാഥാര്‍ഥ്യമാണ്‌. പക്ഷെ ഭാവനയേക്കാള്‍ വിചിത്രമാണ്‌, ഒരുപക്ഷെ ഭാവനകള്‍ക്കപ്പുറത്തുമാണ്‌. തമോദ്വാരങ്ങളാണ്‌ ഈ ദൂരൂഹവും വിചിത്രവും എന്നാല്‍ ശാസ്‌ത്രസത്യവുമായ പ്രതിഭാസം. ഒരു തിരക്കഥാകൃത്തിനും ഇതിലേറെ വിചിത്രമായ സയന്‍സ്‌ ഫിക്ഷന്‍ എഴുതാന്‍ കഴിഞ്ഞിട്ടില്ല.

എന്താണ്‌ തമോദ്വാരം? എങ്ങനെയാണവ ഉണ്ടാകുന്നത്‌? എവിടെയാണവ കാണപ്പെടുന്നത്‌ എന്നെല്ലാം ഇന്ന്‌ ആധുനിക ഭൗതികശാസ്‌ത്രത്തിനറിയാം. പക്ഷെ എന്താണ്‌ തമോദ്വാരത്തിനുള്ളില്‍ സംഭവിക്കുന്നത്‌ എന്നത്‌ ഇന്നും ദുരൂഹമാണ്‌. തമോദ്വാരങ്ങളുടെ ഉള്ളില്‍ നടക്കുന്ന കാര്യങ്ങള്‍ പറയാന്‍ ശ്രമിക്കുകയാണിവിടെ.

Albert Einstein, Hideki Yukawa, and John Archibald Wheeler New Jersey, in 1954. കടപ്പാട് physicstoday

ശാസ്‌ത്രലോകത്തില്‍ തമോദ്വാരങ്ങളേക്കുറിച്ചുള്ള ചര്‍ച്ച ആരംഭിച്ചത്‌ 1783 ല്‍ ആണ്‌. കേംബ്രിഡ്‌ജ്‌ ഗവേഷകനായ ജോണ്‍ മിഷേലും സഹപ്രവര്‍ത്തകരുമാണ്‌ ഈ ചര്‍ച്ചയ്‌ക്ക്‌ തുടക്കം കറിച്ചത്‌. ഒരു ചിന്താപരീക്ഷണവും അവര്‍ അവതരിപ്പിച്ചു. ഒരു വെടിയുണ്ട സങ്കല്‍പിക്കുക. തലയ്‌ക്ക്‌ മുകളിലേക്ക്‌ ഒരു വെടിയുണ്ട പായിക്കുക. കുറെ ദൂരം സഞ്ചരിച്ചു കഴിഞ്ഞാല്‍ അത്‌ തിരിച്ച്‌ ഭൂമിയിലേക്ക്‌ തന്നെ തിരിച്ചുവരും. ഭൂമിയുടെ ഗുരുത്വാകര്‍ഷണ ബലം വെടിയുണ്ടയുടെ വേഗത്തെ അതിജീവിക്കുന്നതാണ്‌ ഇതിന്‌ കാരണം. എന്നാല്‍ ഭൂഗുരുത്വാകര്‍ഷണ ബലത്തെ അതിജീവിക്കുന്ന വേഗത-നമുക്കതിനെ പലായന പ്രവേഗം എന്നു വിളിക്കാം-വെടിയുണ്ടയ്‌ക്കുണ്ടെങ്കില്‍ അതൊരിക്കലും തിരിച്ചുവരില്ല. ഭൂമിയുടെ ഗുരുത്വാകര്‍ഷണ ബലത്തില്‍ നിന്നും രക്ഷപ്പെടാനുള്ള പലായന പ്രവേഗം സെക്കന്റില്‍ 11.2 കിലോമീറ്ററാണ്‌. അതില്‍ കൂടുതല്‍ വേഗതയുള്ള ഒരു വസ്‌തുവും ഭൂമിയില്‍ തിരിച്ചെത്തില്ല. സൂര്യന്റെ കാര്യത്തിലാണെങ്കില്‍ ഇത്‌ സെക്കന്റില്‍ 617 കിലോമീറ്റര്‍ വരും. വെടിയുണ്ടയുടെ വേഗത സെക്കന്റില്‍ മൂന്ന്‌ കിലോമീറ്ററില്‍ താഴെ മാത്രമാണ്‌. അപ്പോള്‍ പിന്നെ സൂര്യനില്‍ നിന്നും പുറപ്പെടുന്ന പ്രകാശം എങ്ങനെയാണ്‌ ഭൂമിയിലെത്തുന്നതെന്ന്‌ ന്യായമായും സംശയിക്കാം. എന്നാല്‍ പ്രകാശ വേഗത സെക്കന്റില്‍ 3,00,000 കിലോമീറ്ററാണ്‌. അതുകൊണ്ട്‌ സൂര്യന്റെയും ഭൂമിയുടെയും ഗുരുത്വാകര്‍ഷണ ബലമൊന്നും പ്രകാശത്തിന്റെ സഞ്ചാരത്തെ കാര്യമായിതടസ്സപ്പെടുത്തില്ല. ജോണ്‍ മിഷേലിന്റെ വാദം ഇവിടെയാണ്‌ ആരംഭിക്കുന്നത്‌. ഭൂമിയുടെ മാസ്സുള്ള ഒരു ദ്രവ്യത്തില്‍ നിന്നുള്ള പലായന പ്രവേഗം 11 കിലോമീറ്റര്‍/സെക്കന്റും സൂര്യന്റെ  മാസ്സുള്ള ദ്രവ്യത്തില്‍ നിന്നുള്ള പലായന പ്രവേഗം 617 കിലോമീറ്റര്‍/സെക്കന്റും ആണെങ്കില്‍ സൂര്യനേക്കാല്‍ വളരെയേറെ മടങ്ങ്‌  മാസ്സുള്ള ഒരു നക്ഷത്രത്തില്‍ നിന്നുള്ള പലായനപ്രവേഗം സെക്കന്റില്‍ മൂന്ന്‌ ലക്ഷം കിലോമീറ്ററിലും അധികമായിരിക്കും. അങ്ങനെ വരുമ്പോള്‍ അത്തരം നക്ഷത്രങ്ങളില്‍ നിന്ന്‌ പ്രകാശമുള്‍പ്പടെ ഒന്നും പുറത്തുവരില്ല. അത്തരമൊരു സാധ്യത ഉണ്ടാകാനിടയുണ്ട്‌.ോ ജോണ്‍ മിഷേല്‍ ഇത്തരം നക്ഷ്രത്രങ്ങളെ ഇരുണ്ട നക്ഷത്രങ്ങള്‍ (Dark stars) എന്ന്‌ വിളിച്ചു. ഇന്ന്‌ ഭൗതികശാസ്‌ത്രജ്ഞര്‍ അവയെ തമോദ്വാരങ്ങള്‍ (Black holes) എന്ന്‌ വിളിക്കുന്നു.

തമോദ്വാരങ്ങളെക്കുറിച്ച്‌ അിറയണമെങ്കില്‍ എന്താണ്‌ ഗുരുത്വാകര്‍ഷണ ബലം എന്ന്‌ വിശദമായി മനസ്സിലാക്കിയിരിക്കണം. ഗുരുത്വാകര്‍ഷണ ബലത്തെക്കുറിച്ച്‌ വിശദീകരിക്കാന്‍ ഇന്ന്‌ ഏറ്റവും പര്യാപ്‌തമായ സിദ്ധാന്തം ആല്‍ബര്‍ട്ട്‌ ഐന്‍സ്റ്റൈന്റെ പൊതു ആപേക്ഷികതാ പ്രമാണമാണ്‌. ആപേക്ഷികതയില്‍ സ്ഥലം, കാലം, ഗുരുത്വാകര്‍ഷണം എന്നീ പ്രതിഭാസങ്ങളെക്കുറിച്ചാണ്‌ പരാമര്‍ശിക്കുന്നത്‌. പ്രപഞ്ചത്തിലെ നാല്‌ അടിസ്ഥാനബലങ്ങളില്‍ ഏറ്റവും ദുര്‍ബലമാണ്‌ ഗുരുത്വാകര്‍ഷണമെങ്കിലും ചില സവിശേഷതകള്‍ ഇതിനുണ്ട്‌. ഒന്നാമത്‌ ഇത്‌ വലിയ ദൂരങ്ങളിലേക്ക്‌ വ്യാപിച്ചിരിക്കുന്നു. രണ്ടാമത്‌ ഇതിന്‌ ആകര്‍ഷണ സ്വഭാവം മാത്രമേയുള്ളൂ, വികര്‍ഷണമില്ല. ഈ രണ്ട്‌ സ്വഭാവങ്ങളും മറ്റൊരു മൗലികബലത്തിനും അവകാശപ്പെടാന്‍ കഴിയില്ല.  വൻ നക്ഷത്രങ്ങള്‍ അവയുടെ ഗുരുത്വാകര്‍ഷണ ബലം കാരണം തകര്‍ന്നടിയുമെന്ന യാഥാര്‍ഥ്യം ശാസ്‌ത്രസമൂഹം സാവധാനം അംഗീകരിച്ചു വരുന്നതിനിടയിലാണ്‌ 1939 ല്‍ ആല്‍ബര്‍ട്ട്‌ ഐന്‍സ്റ്റൈന്‍ ഒരു ഗവേഷണ പ്രബന്ധം അവതരിപ്പിച്ചത്‌. ഒരു നിശ്ചിത പരിധിക്കപ്പുറം ദ്രവ്യത്തെ സങ്കോചിപ്പിക്കാന്‍ കഴിയില്ലെന്നാണ്‌ ഐന്‍സ്റ്റൈന്‍ സമര്‍ഥിക്കാന്‍ ശ്രമിച്ചത്‌. ഐന്‍സ്റ്റൈന്റെ ആശയം തന്നെയായിരുന്നു അക്കാലത്തെ കൂടുതല്‍ ഭൗതികശാസ്‌ത്രജ്ഞര്‍ക്കുമുണ്ടായിരുന്നത്‌. എന്നാല്‍ അമേരിക്കന്‍ ഭൗതികശാസ്‌ത്രജ്ഞനായ ജോണ്‍ വീലര്‍ക്ക്‌ ഇക്കാര്യത്തില്‍ വിരുദ്ധാഭിപ്രായമാണ്‌ ഉണ്ടായിരുന്നത്‌. തമോദ്വാരങ്ങളുടെ തിരക്കഥയില്‍ നായക സ്ഥാനത്തിന്‌ എന്തുകൊണ്ടും അര്‍ഹനായി ഇന്ന്‌ ജോണ്‍ വീലറെ ശാസ്‌ത്രസമൂഹം പരിഗണിക്കുന്നു. 1950 കളിലും 60 കളിലും അദ്ദേഹം നടത്തിയ നിരവധി സൈദ്ധാന്തിക പരീക്ഷണങ്ങളിലുടെ വലിയ നക്ഷത്രങ്ങള്‍ അവയുടെ ഗുരുത്വാകര്‍ഷണബലം കാരണം തകര്‍ന്നടിയുമെന്ന്‌ തെളിയിച്ചു.

ജോണ്‍ വീലര്‍ (John Archibald Wheeler)

ഒരു നക്ഷത്രം കോടിക്കണക്കിന്‌ വര്‍ഷങ്ങള്‍ അതിന്റെ ഗുരുത്വാകര്‍ഷണ ബലത്തെ അതിജീവിച്ച്‌ നിലനില്‍ക്കും. നക്ഷത്രക്കാമ്പില്‍ നടക്കുന്ന ന്യൂക്ലിയര്‍ പ്രവര്‍ത്തനങ്ങളുടെ ഫലമായുണ്ടാകുന്ന മര്‍ദമാണ്‌ ഇതിനു കാരണം. എന്നാല്‍ ന്യൂക്ലിയര്‍ ഇന്ധനമെല്ലാം ജ്വലിച്ചു തീരുമ്പോള്‍ നക്ഷത്രത്തിന്‌ ഗുരുത്വാര്‍ഷണത്തിനു മുന്നില്‍ കീഴടങ്ങാതെ നിവൃത്തിയില്ലെന്നു വരും. ഇങ്ങനെ മൃതാവസ്ഥയിലെത്തിയ ഒരു നക്ഷത്രത്തിന്റെ മാസ്സ് സൂര്യപിണ്‌ഡത്തിന്റെ 1.4 മടങ്ങ്‌ ഉണ്ടായാല്‍ അത്‌ വെള്ളക്കുള്ളന്‍ എന്നറിയപ്പെടുന്ന ഒരു സാന്ദ്ര നക്ഷത്രമായി മാറും. ഇന്ത്യന്‍ വംശജനായ അമേരിക്കന്‍ ശാസ്‌ത്രജ്ഞന്‍ സുബ്രഹ്മണ്യന്‍ ചന്ദ്രശേഖറാണ്‌ ഈ പരിധി പ്രവചിച്ചത്‌. ചന്ദ്രശേഖര്‍ സീമ എന്നാണീ പരിധി അറിയപ്പെടുന്നത്‌. ചന്ദ്രശേഖര്‍ സീമയിലും കുറച്ച്കൂടി ദ്രവ്യമുള്ള നക്ഷത്രങ്ങൾ  ന്യൂട്രോണ്‍ താരങ്ങള്‍ എന്ന അവസ്ഥയിലാണെത്തുന്നത്‌.  എന്നാല്‍ മാസ്സ് വളരെ കൂടിയ നക്ഷത്രങ്ങളുടെ ഭാവി എന്തായിരിക്കും? തീര്‍ച്ചയായും ഗുരുത്വാകര്‍ഷണ ബലത്തിന്റെ തീവ്രതയില്‍  തകര്‍ന്നടിയുന്നതില്‍ നിന്ന്‌ അവയെ തടഞ്ഞുനിര്‍ത്താന്‍ ഒരു തരത്തിലുമുള്ള മര്‍ദത്തിനും കഴിയില്ല. ഈ പരികല്‍പന ആദ്യമായി മുന്നോട്ടു വച്ചത്‌ റോബര്‍ട്ട്‌ ഓപ്പണ്‍ഹൈമറായിരുന്നു.

എസ്. ചന്ദ്രശേഖര്‍ (Subrahmanyan Chandrasekhar)

1939 ല്‍ ഓപ്പണ്‍ഹൈമറും ജോര്‍ജ്‌ വോള്‍ക്കോഫും ഹര്‍ട്ട്‌ലാന്‍ഡ്‌ സ്‌നൈഡറും ചേര്‍ന്ന്‌ ഈ വിഷയത്തില്‍ നിരവധി പേപ്പറുകള്‍ ശാസ്‌ത്ര സമൂഹത്തിനു മുമ്പാകെ അവതരിപ്പിച്ചു. ഇങ്ങനെ തകര്‍ന്നടിയുന്ന നക്ഷത്രങ്ങള്‍ അതിസാന്ദ്രമായ ഒരു ബിന്ദുവായി മാറുമെന്നും സ്ഥലകാലവക്രത അനന്തമാകുന്ന ഈ ബിന്ദുവിനെ സിംഗുലാരിറ്റി അഥവാ വൈചിത്യ്രം എന്നു വിളിക്കാന്‍ കഴിയുമെന്നും അവര്‍ സിദ്ധാന്തിച്ചു. സ്ഥലകാലം പരന്നതാണെന്ന ഐന്‍സ്റ്റൈന്റെ ധാരണയ്‌ക്കും പരമ്പരാഗത യുക്ലിഡിയന്‍ ജ്യാമിതിയ്‌ക്കും വിരുദ്ധമായിരുന്നു ഈ സമീപനം. സിംഗുലാരിറ്റിയില്‍ സ്ഥലകാലവക്രത അനന്തമാണെന്ന്‌ പറയുമ്പോള്‍ അവിടെ സ്ഥലകാലം ഇല്ലാതാവുകയാണ്‌. അതുകൊണ്ടുതന്നെയാണ്‌ തമോദ്വാരങ്ങള്‍ ഒരിക്കലും സംഭവിക്കില്ലെന്ന്‌ ഐന്‍സ്റ്റൈന്‍ വിശ്വസിക്കാനിടയായത്‌.

റോജര്‍ പെന്‍റോസ്‌ (Roger Penrose)

1939 ല്‍ രണ്ടാം ലോകമഹായുദ്ധം ആരംഭിച്ചതോടുകൂടി പലരും ആണവായുധ നിര്‍മാണത്തില്‍ ശ്രദ്ധകേന്ദ്രീകരിച്ചു. അതോടെ തമോദ്വാരങ്ങളേക്കുറിച്ചുള്ള പഠനങ്ങളും മന്ദഗതിയിലായി. പിന്നീട്‌ 1965 ല്‍ സര്‍. റോജര്‍ പെന്‍റോസ്‌ അവതരിപ്പിച്ച ഒരു പുതിയ പരികല്‍പനയാണ്‌ ഈ മേഖലയിലുള്ള പഠനങ്ങള്‍ക്ക്‌ ഒരു പുതിയ തുടക്കം കുറിച്ചത്‌. പെന്‍ റോസിന്റെ പoനത്തില്‍ സിംഗുലാരിറ്റി സംഭവിക്കുമെന്ന്‌ തെളിഞ്ഞു. എന്നാല്‍ ആല്‍ബര്‍ട്ട്‌ ഐന്‍സ്റ്റെന്റെ ക്ഷേത്ര സമവാക്യങ്ങള്‍ അനുസരിച്ച്‌ സിംഗുലാരിറ്റി ഉണ്ടാകാന്‍ പാടില്ല. പക്ഷെ തന്റെ വാദങ്ങള്‍ സമര്‍ഥിക്കുന്നതില്‍ പെന്‍ റോസ്‌ വിജയം കൈവരിച്ചു. സിംഗുലാരിറ്റികള്‍ ദൃശ്യപ്രപഞ്ചത്തില്‍ നിന്ന്‌ മറയ്‌ക്കപ്പെട്ടിരിക്കുകയാണെന്നും അവയില്‍ നിന്ന്‌ ഒരു തരത്തിലുമുള്ള വിവരങ്ങള്‍ പുറത്തുവരുന്നില്ലെന്നും അതിനാല്‍ വൈചിത്യ്രം ഒരിക്കലും നഗ്നമാക്കപ്പെടില്ലെന്നും (No Naked singularities) പെന്‍റോസിന്റെ പരികല്‍പന ശാസ്‌ത്രലോകത്തിന്‌ അംഗീകരിക്കേണ്ടി വന്നു. 1967 ല്‍ ജോണ്‍ വീലറാണ്‌ തണുത്തുറഞ്ഞ നക്ഷത്രം (Frozen star) എന്ന പേര്‌ മാറ്റി ഈ പ്രതിഭാസത്തിന്‌ ബ്ലാക്ക്‌ ഹോള്‍ എന്ന പേര്‌ നല്‍കുന്നത്‌. പുറമെ നിന്നുള്ള ഒരു നിരീക്ഷകന്‌ തമോദ്വാരത്തിനുള്ളില്‍ എന്താണ്‌ സംഭവിക്കുന്നതെന്ന്‌ ഒരിക്കലും അിറയാന്‍ കഴിയില്ല.

Supermassive Black Hole Sagittarius A* (Center of our Milky Way galaxy using data from NASA’s Chandra X-ray)

തമോദ്വാരത്തിന്റെ ഒരു തരം അതിര്‍വരമ്പാണ്‌ സംഭവ ചക്രവാളം (Event Horizon). പ്രകാശത്തിനു പോലും രക്ഷപ്പെടാനാകാത്ത വണ്ണം തീവ്രമാണ്‌ സംഭവ ചക്രവാളത്തിനടുത്തെ ഗുരുത്വാകര്‍ഷണബലം. പ്രകാശത്തിനുപോലും പുറത്തെത്താന്‍ കഴിയില്ല എന്നു പറഞ്ഞാല്‍ പ്രപഞ്ചത്തിലുള്ള ഒന്നിനും സംഭവ ചക്രവാളത്തിന്‌ പുറത്തെത്താന്‍ കഴിയില്ലെന്നാണര്‍ഥം. പ്രകാശത്തേക്കാള്‍ വേഗമുള്ള ഒന്നും പ്രപഞ്ചത്തിലില്ലല്ലോ. ഇനി സംഭവ ചക്രവാളത്തെ സമീപിക്കുന്ന ഒരു സമയസഞ്ചാരിയുടെ അവസ്ഥ എന്തായിരിക്കുമെന്ന്‌ സങ്കല്‍പിച്ചുനോക്കാം. ഇതൊരു ചിന്താപരീക്ഷണം മാത്രമാണ്‌. ഒരിക്കലും സംഭവിക്കുമെന്ന്‌ കരുതരുത്‌. ഒരു വലിയ വെള്ളച്ചാട്ടത്തിനടുത്തേക്ക്‌ തോണിയില്‍ യാത്ര ചെയ്യുന്നയാളുമായി സമയസഞ്ചാരിയെ താരതമ്യപ്പെടുത്താന്‍ കഴിയും. വെള്ളച്ചാട്ടത്തിനടുത്തേക്കെത്തുന്തോറും തോണിയുടെ വേഗത വര്‍ധിച്ചുവരും. വിപരീത ദിശയിലേക്ക്‌ സര്‍വ ശക്തിയുമെടുത്ത്‌ തുഴഞ്ഞാല്‍ ഒരുപക്ഷെ വെള്ളച്ചാട്ടത്തില്‍ പതിക്കാതെ തോണിക്കാരന്‌ രക്ഷപ്പെടാന്‍ കഴിഞ്ഞേക്കും. എന്നാല്‍ വെള്ളച്ചാട്ടത്തിന്റെ തൊട്ടടുത്തെത്തിക്കഴിഞ്ഞാല്‍ പിന്നീട്‌ പിന്നിലേക്കുള്ള യാത്ര അസാധ്യമായിത്തീരും. ജലപ്രവാഹത്തിന്റെ തീവ്രതയില്‍ തോണി തന്നെ ഛിന്നഭിന്നമായിപ്പോയേക്കാം. ഇതേ അവസ്ഥ തന്നെയാണ്‌ സംഭവ ചക്രവാളത്തെ സമീപിക്കുന്ന ഒരു സമയസഞ്ചാരിക്കും ഉണ്ടാവുക. സംഭവ ചക്രവാളത്തിന്റെ അതിരുകളിലെത്തുമ്പോഴേക്കും ഗുരുത്വാകര്‍ഷണ ബലം അത്യധികം തീവ്രമാവുകയും സമയസഞ്ചാരിയുടെ പാദം മുതല്‍ വലിച്ചുനീട്ടാന്‍ ആരംഭിക്കുകയും വശങ്ങളില്‍ നിന്ന്‌ ഞെക്കിയമര്‍ത്താന്‍ തുടങ്ങുകയും ചെയ്യും. കാരണം തമോദ്വാരത്തിന്റെ ഗുരുത്വാകര്‍ഷണ ബലം കൂടുതല്‍ അനുഭവപ്പെടുന്നത്‌ സംഭവ ചക്രവാളത്തിലേക്ക്‌ ഏറ്റവുമാദ്യം എത്തുന്ന ഭാഗത്തായിരിക്കും. ഇത്‌ സൂര്യന്റെ നാല്‌ മടങ്ങ്‌ മാസ്സുള്ള ഒരു തമോദ്വാരത്തില്‍ സംഭവിക്കുന്ന കാര്യമാണ്‌. എന്നാല്‍ സൂര്യന്റെ ദശലക്ഷം മടങ്ങ്‌ മാസ്സുള്ള തമോദ്വാരം സമയസഞ്ചാരിയുടെ ശരീരം മുഴുവന്‍ ഒരേ തരത്തിലുള്ള ഗുരുത്വാകര്‍ഷണ ബലമായിരിക്കും പ്രയോഗിക്കുക. ശരീരത്തെ ഛിന്നഭിന്നമാക്കാതെതന്നെ സംഭവ ചക്രവാളം വിഴുങ്ങിക്കളയും. അതായത്‌ സമയസഞ്ചാരിക്ക്‌ നല്ലത്‌ അതിഭീമൻ തമോദ്വാരത്തെ സമീപിക്കുന്നതാണ്‌. ക്ഷീരപഥത്തിന്റെ കേന്ദ്രത്തിലുള്ള തമോദ്വാരത്തിന്‌ നാല്‌ ദശലക്ഷം സൗരപിണ്‌ഡമുണ്ടെന്നാണ്‌ അനുമാനിക്കുന്നത്‌. ഇപ്പറഞ്ഞത്‌ സമയസഞ്ചാരിയുടെ അവസ്ഥായാണെങ്കില്‍ പുറമെനിന്ന്‌ നോക്കുന്ന ഒരു നിരീക്ഷകന്‌ സംഭവങ്ങള്‍ ഇങ്ങനെയൊന്നുമല്ല അനുഭവപ്പെടുന്നത്‌. ബാഹ്യ നിരീക്ഷകനെ സംബന്ധിച്ചിടത്തോളം സമയസഞ്ചാരി ഒരിക്കലും സംഭവ ചക്രവാളത്തിനുള്ളില്‍ പ്രവേശിക്കില്ല. സംഭവ ചക്രവാളത്തോടടുക്കുമ്പോള്‍ സമയസഞ്ചാരിയുടെ വേഗത പ്രകാശ വേഗതയേടടുത്തെത്തും. അതോടെ നിരീക്ഷകനെ സംബന്ധിച്ചിടത്തോളം സമയ പ്രവാഹം സാവധാനത്തിലാകും. സംഭവ ചക്രവാളത്തിനുള്ളിലേക്ക്‌ പ്രവേശിക്കുന്നതോടെ നിരീക്ഷകന്‌ സമയം നിശ്ചലമാകും. അതായത്‌ സമയസഞ്ചാരി ഒരിക്കലും സംഭവ ചക്രവാളത്തിനുള്ളില്‍ പ്രവേശിക്കില്ല. നിരീക്ഷകന്റെ ദൃഷ്‌ടിയില്‍ സമയസഞ്ചാരിയുടെ ചിത്രം ശോഭ കുറഞ്ഞ്‌ ചുവപ്പ്‌ രാശിയിലേക്ക്‌ നീങ്ങുകയും ഒടുവില്‍ തീര്‍ത്തും ഇരുണ്ടുപോവുകയും ചെയ്യും. അതോടെ സമയസഞ്ചാരി ഈ പ്രപഞ്ചത്തില്‍ നിന്ന്‌ എന്നെന്നേക്കുമായി നഷ്‌ടപ്പെടും. ഒരിക്കലും തിരിച്ചെടുക്കാനാവത്തവണ്ണമുള്ള നഷ്‌ടപ്പെടല്‍.

ഒരു തമോദ്വാരത്തിന്റെ മൂന്ന്‌ സവിശേഷതകള്‍ മാത്രമേ ബാഹ്യ നിരീക്ഷകന്‌ അളക്കാന്‍ സാധിക്കുകയുള്ളൂ. പിണ്‌ഡം, വൈദ്യുത ചാര്‍ജ്‌, കോണീയ സംവേഗം എന്നിവയാണവ. അതായത്‌ തമോദ്വാരത്തിനുള്ളില്‍ എന്താണെന്നോ അവയുടെ സ്വഭാവമെന്താണെന്നോ മനസ്സിലാക്കാന്‍ കഴിയില്ല. ഒരുപാട്‌ പുസ്‌തകങ്ങള്‍ കുത്തിനിറച്ച വലിയൊരു അലമാര പോലെ തമോദ്വാരത്തെ സങ്കല്‍പിക്കാം. പുസ്‌തകങ്ങള്‍ കുത്തിനിറച്ചിരിക്കുന്നതുകൊണ്ട്‌ അവയിലൊന്നുപോലും പുറത്തെടുക്കാനോ അവയുടെ പേരുപോലും വായിച്ചെടുക്കാനോ കഴിയാത്ത അവസ്ഥപോലെ തന്നെയാണ്‌ തമോദ്വാരത്തിനുള്ളിലും സംഭവിക്കുന്നത്‌. ഒരു നിശ്‌ചിത ഇടത്ത്‌ ഒരുപാട്‌ വിവരങ്ങള്‍ കുത്തിനിറച്ചാല്‍ അതൊരു തമോദ്വാരമായി മാറുമെന്നാണ്‌ ഹോക്കിംഗ്‌ ഫലിതം പറയുന്നത്‌. അതുകൊണ്ട്‌ തലയിലേക്ക്‌ അധികം വിവരങ്ങള്‍ കുത്തിനിറയ്‌ക്കാന്‍ ശ്രമിക്കേണ്ട. ചിലപ്പോള്‍ നിങ്ങളുടെ തല ഒരു തമോദ്വാരമായി മാറിയേക്കുമെന്നും ഹോക്കിംഗ്‌ തമാശ രൂപേണ കൂട്ടിച്ചേര്‍ക്കുന്നു.

സ്റ്റീഫന്‍ ഹോക്കിംഗ്‌ (Stephen Hawking)

തമോദ്വാരങ്ങള്‍ വിഴുങ്ങിയിരിക്കുന്ന വിവരങ്ങള്‍ (Informations) ദ്വാരത്തിന്റെ വലിപ്പത്തെ ആശ്രയിച്ചാണിരിക്കുന്നതെങ്കില്‍ ഭൗതിക നിയമങ്ങളനുസരിച്ച്‌ ഒരു ജ്വലിക്കുന്ന ലോഹത്തില്‍ നിന്നെന്നവണ്ണം തമോദ്വാരത്തില്‍ നിന്ന്‌ താപ വികിരണങ്ങള്‍ പുറന്തള്ളപ്പെടണം. എന്നാല്‍ ഇത്‌ അസാധ്യമാണ്‌. കാരണം ഒരുതരം വികിരണങ്ങള്‍ക്കും പ്രകാശ വേഗതയെ മറികടക്കാന്‍ കഴിയില്ല. 1974 ല്‍ സ്റ്റീഫന്‍ ഹോക്കിംഗ്‌ തമോദ്വാരങ്ങളെ സംബന്ധിക്കുന്ന ഒരു ക്വാണ്ടം സിദ്ധാന്തം അവതരിപ്പിച്ചു. ഹോക്കിംഗ്‌ അവതരിപ്പിച്ച പ്രബന്ധത്തില്‍ തമോദ്വാരങ്ങള്‍ താപ വികിരണങ്ങള്‍ ഉത്സര്‍ജിക്കുന്നുണ്ടെന്നാണ്‌ പറയുന്നത്‌. എന്നാല്‍ പ്രകാശമുള്‍പ്പടെ ഒരു തരത്തിലുമുള്ള വികിരണങ്ങള്‍ പുറന്തള്ളാന്‍ കഴിയാത്തതുകൊണ്ടാണ്‌ തമോദ്വാരം എന്ന പേരുപോലും ഇത്തരം ഇരുണ്ട നക്ഷത്രങ്ങള്‍ക്ക്‌ നല്‍കിയിരിക്കുന്നത്‌. അപ്പോള്‍ ഹോക്കിംഗിന്റെ വാദം അപ്രസക്തമാവില്ലേ എന്നൊരു സംശയം തോന്നുക സ്വാഭാവികമാണ്‌. ഹോക്കിംഗിനേപ്പോലെ നിരവധി ശാസ്‌ത്രജ്ഞര്‍ ഇത്തരം വികിരണങ്ങള്‍ തമോദ്വാരത്തില്‍ നിന്ന്‌ പുറപ്പെടുമെന്ന്‌ ഗണിതപരമായി തെളിയിക്കാന്‍ കഴിയുമെന്ന്‌ വിശ്വസിക്കുകയും ചെയ്‌തു. ഹോക്കിംഗിന്റെ സമീപനം എന്തായിരുന്നുവെന്ന്‌ പരിശോധിക്കാം. ക്വാണ്ടം മെക്കാനിക്‌സ്‌ അനുസരിച്ച്‌ സ്‌പേസ്‌ വിര്‍ച്വല്‍ പാര്‍ട്ടിക്കിളുകള്‍ കൊണ്ടും ആന്റിപാര്‍ട്ടിക്കിളുകള്‍ കൊണ്ടും നിറഞ്ഞിരിക്കുകയാണ്‌. വിര്‍ച്വല്‍ പാര്‍ട്ടിക്കിള്‍ എന്ന്‌ ഇവയെ വിളിക്കാന്‍ കാരണം സാധാരണ കണികകളേപ്പോലെ ഒരു കണികാ പരീക്ഷണശാലയില്‍ വച്ച്‌ ഇവയെ കണ്ടുപിടിക്കാന്‍ കഴിയാത്തതുകൊണ്ടാണ്‌. എന്നാല്‍ ഇവയുടെ സാന്നിധ്യം മനസ്സിലാക്കുന്നതിന്‌ (Lamb Shift) കഴിയും. സ്‌പേസില്‍ വിര്‍ച്വല്‍ പാര്‍ട്ടിക്കിളുകളും അവയുടെ പ്രതികണികകളും കൂടിച്ചേരുകയും പരസ്‌പരം നിഗ്രഹിച്ച്‌ ഊര്‍ജമായി മാറുകയും ഊര്‍ജം വീണ്ടും ദ്രവ്യമായി മാറുകയും (E = mc^2) ചെയ്യുന്ന പ്രവര്‍ത്തനം തുടര്‍ച്ചയായി നടന്നുകൊണ്ടിരിക്കുയാണ്‌. തമോദ്വാരത്തിന്റെ സംഭവ ചക്രവാളത്തിനു സമീപമെത്തുന്ന ഒരു കണികയും അതിന്റെ പ്രതികണികയും പരസ്‌പരം കൂട്ടിമുട്ടുന്നതിനു മുന്‍പ്‌ ഇവയിലേതെങ്കിലുമൊന്ന്‌ സംഭവ ചക്രവാളത്തിനുള്ളിലേക്കും മറ്റേത്‌ വെളിയിലേക്കും വന്നാല്‍ നിരീക്ഷകനെ സംബന്ധിച്ചിടത്തോളം തമോദ്വാരം വികിരണങ്ങള്‍ ഉത്സര്‍ജിക്കുന്നതായാണ്‌ അനുഭവപ്പെടുക.

മറ്റൊരു സാധ്യതകൂടി ഹോക്കിംഗ്‌ ചൂണ്ടിക്കാണിക്കുന്നുണ്ട്‌. സംഭവ ചക്രവാളത്തിന്റെ വക്കിലുള്ള കണിക-പ്രതികണിക ജോടികളിലൊന്ന്‌ ചക്രവാളത്തിനകത്തേക്കും മറ്റൊന്ന്‌ പുറത്തേക്കും സഞ്ചരിച്ചാല്‍ സംഭവ ചക്രവാളത്തിനുള്ളില്‍ പതിക്കുന്ന കണിക സമയത്തില്‍ പിന്നിലേക്കും പുറത്തേക്ക്‌ സഞ്ചരിക്കുന്ന കണിക സമയത്തില്‍ മുന്നിലേക്കുമായിരിക്കും സഞ്ചരിക്കുക. സംഭവ ചക്രവാളത്തിനുള്ളില്‍ പ്രകാശ വേഗത മറികടക്കുന്നതുകൊണ്ട്‌ വിശിഷ്‌ട ആപേക്ഷികതയനുസരിച്ച്‌ സമയം പിന്നിലേക്കായിരിക്കും സഞ്ചരിക്കുക. അപ്പോള്‍ ഒരു ബാഹ്യനിരീക്ഷകനെ സംബന്ധിച്ചിടത്തോളം രണ്ട്‌ കണികകളും വികിരണമായി പുറത്തേക്ക്‌ ഉത്സര്‍ജിക്കുന്നതായി അനുഭവപ്പെടും. സൂര്യന്റെ പിണ്‌ഡമുള്ള ഒരു തമോദ്വാരത്തില്‍ നിന്ന്‌ പുറപ്പെടുന്ന ഇത്തരം വികിരണങ്ങള്‍ തീര്‍ത്തും ദുര്‍ബലവും അതുകൊണ്ട്‌ കണ്ടുപിടിക്കുക അസാധ്യവുമായിരിക്കും. എന്നാല്‍ സൂക്ഷ്‌മ തമോദ്വാരങ്ങളില്‍ (Micro black holes) ഇതല്ല സ്ഥിതി. എക്‌സ്‌-വികിരണങ്ങളും ഗാമാ കിരണങ്ങളും ഇത്തരം സൂക്ഷ്‌മ തമോദ്വാരങ്ങളില്‍ നിന്ന്‌ പുറപ്പെട്ടിരിക്കും. ശക്തമായ ഒരു കണികാ പരീക്ഷണശാലയില്‍ ഇത്തരം സൂക്ഷ്‌മ തമോദ്വാരങ്ങളെ സൃഷ്‌ടിക്കാന്‍ കഴിഞ്ഞേക്കും. എന്നാല്‍ രൂപപ്പെടുന്ന മാത്രയില്‍തന്നെ അവ ഭൂമി തുളച്ച്‌ കടന്നുപോകും. സേണിന്റെ നിയന്ത്രണത്തിലുള്ള സ്വിറ്റ്‌സര്‍ലണ്ടിലെ ലാര്‍ജ്‌ ഹാഡ്രോണ്‍ കൊളൈഡര്‍ പോലെയുള്ള കണികാ പരീക്ഷണശാലകളില്‍ ഉയര്‍ന്ന ഊര്‍ജനിലയിലുള്ള കണികാസംഘട്ടനം നടത്തുമ്പോള്‍ ഇത്തരം അതിസൂക്ഷ്‌മ തമോദ്വാരങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടാന്‍ സാധ്യതയുണ്ട്‌. മറ്റൊരു സാധ്യത ഹോക്കിംഗ്‌ ചൂണ്ടിക്കാണിക്കുന്നത്‌ സ്‌പേസിന്റെ അധിക മാനങ്ങളിലാണ്‌ (Extra Dimensions). ചില ക്വാണ്ടം ഗ്രാവിറ്റി സിദ്ധാന്തങ്ങളനുസരിച്ച്‌ സ്‌പേസിന്‌ പത്തോ പതിനൊന്നോ മാനങ്ങളുണ്ട്‌ (dimensions).

തമോദ്വാരത്തില്‍ നിന്ന്‌ വികിരണങ്ങള്‍ ഉത്സര്‍ജിച്ചുകൊണ്ടിരുന്നാല്‍ അവയിലെ ദ്രവ്യം കുറയുകയും ചുരുങ്ങാനാരംഭിക്കുകയും ചെയ്യും. തമോദ്വാരങ്ങള്‍ ചുരുങ്ങാനാരംഭിക്കുന്നതോടെ വികിരണങ്ങള്‍ പുറത്തേക്കു വരുന്നതിന്റെ അളവും വര്‍ധിക്കും. ഒടുവില്‍ തമോദ്വാരങ്ങളുടെ പിണ്‌ഡം മുഴുവനും വികിരണങ്ങളായി ഉത്‌സര്‍ജിക്കപ്പെട്ട്‌ തമോദ്വാരം അപ്രത്യക്ഷമാകും. അപ്പോള്‍ ഒരു സൈദ്ധാന്തിക പ്രശ്‌നം ഉണ്ടാകുന്നുണ്ട്‌. തമോദ്വാരത്തില്‍ അകപ്പെട്ട സമയ സഞ്ചാരിയുടെ ഭാവി എന്തായിരിക്കും? ചോദ്യം പ്രസക്തമാണ്‌. തമോദ്വാരത്തില്‍ അകപ്പെടുന്ന ദ്രവ്യത്തിന്റെയും ഊര്‍ജത്തിന്റെയും സ്വഭാവമായിരിക്കില്ല അവയില്‍ നിന്ന്‌ പുറത്തുവരുന്ന വികിരണങ്ങള്‍ക്ക്‌. ഇത്‌ വലിയൊരു പ്രഹേളിക തന്നെ സൃഷ്‌ടിക്കുന്നുണ്ട്‌. തമോദ്വാരങ്ങളിലെ വിവരനഷ്‌ട പ്രഹേളിക എന്നാണിത്‌ അറിയപ്പെടുന്നത്‌. തമോദ്വാരത്തില്‍ പതിക്കുന്ന വിവരങ്ങള്‍ നഷ്‌ടപ്പെടില്ല എന്നുതന്നെയാണ്‌ സൈദ്ധാന്തിക ഭൗതികജ്ഞര്‍ കരുതുന്നത്‌. എന്നാല്‍ തമോദ്വാര വികിരണങ്ങളില്‍ നിന്ന്‌ വിവരങ്ങള്‍ പുനര്‍നിര്‍മിക്കാനും സാധിക്കില്ല. സ്റ്റീഫന്‍ ഹോക്കിംഗ്‌ ഉള്‍പ്പടെ നിരവധി ശാസ്‌ത്രജ്ഞര്‍ ഈ പ്രഹേളികയ്‌ക്ക്‌ ഉത്തരം കണ്ടെത്താന്‍ ശ്രമിച്ചിട്ടുണ്ട്‌. ക്വാണ്ടം മെക്കാനിക്ക്‌സും ആപേക്ഷികതയും സംയോജിപ്പിച്ചുകൊണ്ടുള്ള അതിസമമിതി (super symmetry) സിദ്ധാന്തങ്ങളുപയോഗിച്ച്‌ ആസന്ന ഭാവിയില്‍ വിവരനഷ്‌ട പ്രഹേളിക പരിഹരിക്കാന്‍ കഴിയുമെന്നാണ്‌ ശാസ്‌ത്രലോകം വിശ്വസിക്കുന്നത്‌. ഇതില്‍ സ്റ്റീഫന്‍ ഹോക്കിംഗും മാല്‍ക്കം പെറിയും ആന്‍ഡി സ്‌ട്രോമിംഗറും ചേര്‍ന്ന്‌ മുന്നോട്ടുവച്ച പരികല്‍പന വിവരനഷ്‌ട പ്രഹേളികയ്‌ക്ക്‌ ഏറെ സങ്കീർണമായ വിശദീകരണം നല്‍കുന്നുണ്ട്‌.


കൂടുതല്‍ ലൂക്ക ലേഖനങ്ങള്‍

Leave a Reply